Examen. Avril 2013

Les documents ne sont pas autorisés. Durée de l'épreuve : 3 heures.

Questions de cours

- 1. Donner la définition d'un modèle statistique régulier.
- 2. Donnner l'énoncé et la preuve du théorème de Cramer-Rao.
- 3. Soit X_1, \ldots, X_n un n-échantillon de la loi de Bernoulli $B(\vartheta)$.
 - (a) Calculer l'information de Fisher et montrer que \bar{X}_n est efficace.
 - (b) Rappeler l'inégalité de Hoeffding pour des variables aléatoires qui suivent une loi de Bernoulli et en donner la preuve.
 - (c) Utiliser l'inégalité de Hoeffding pour construire un intervalle de confiance au niveau de confiance α pour ϑ .

Exercice 1

Soit X_1, \ldots, X_n un n-échantillon de la loi de $\vartheta + Y$ où Y suit une loi exponentielle de paramètre $1, \vartheta \in \Theta =]0, \infty[$.

1. Montrer que la variable X_1 admet une densité de probabilité qui est donnée par

$$f_{\vartheta}(x) = e^{-(x-\vartheta)} \mathbf{1}_{x>\vartheta}.$$

2. Soit \bar{X}_n la moyenne empirique. Déterminer la constante c telle que

 $\bar{X}_n - c$ est un estimateur sans biais de ϑ .

- 3. Un autre estimateur possible est $\hat{\vartheta}_n = \min\{X_1, \dots, X_n\}$. (Pourquoi ?) Montrer, sans faire le calcul, que $\hat{\vartheta}_n$ est un estimateur qui est biaisé.
- 4. Montrer que $\hat{\vartheta}_n$ converge en probabilité vers ϑ lorsque $n \to \infty$.
- 5. On veut maintenant construire un intervalle de confiance en utilisant l'estimateur $\hat{\vartheta}_n$. Lequel des intervalles suivants est préférable (donnez une justification de votre réponse)?

$$I_1 = [\hat{\vartheta}_n - \delta, \hat{\vartheta}_n + \delta]$$

ou

$$I_2 = [\hat{\vartheta}_n - \delta, \hat{\vartheta}_n]$$

ou

$$I_3 = [\hat{\vartheta}_n, \hat{\vartheta}_n + \delta],$$

pour un $\delta > 0$ à choisir.

6. Choisir un des intervalles et constuire un intervalle de confiance (théorique) au niveau α , en se basant sur l'estimation du point 4 (c'est-à-dire déterminer δ en fonction de n et de α).

Exercice 2

Un appareil de guidage radar récolte des informations dans une direction de l'espace. Celles-ci se présentent sous la forme d'un vecteur d'observation (Z_1, \ldots, Z_n) où les Z_i sont i.i.d et de loi $\mathcal{N}(0, \sigma^2)$ s'il n'y a pas d'obstacle et de loi $\mathcal{N}(m, \sigma^2)$ s'il y en a un, où σ^2 est connu. Si le radar détecte un obstacle, on recalcule la trajectoire, sinon on ne change rien. On souhaite tester H_0 : " $m \neq 0$ " contre H_1 : "m = 0". Comment interpréter dans ce cas les risques de première et de deuxième espèce ?

Exercice 3

Une société d'assurances a comptabilisé parmi ses 500 assurés ceux qui ont déclaré un ou plusieurs sinistres au cours de l'année écoulée. Cela a donné le tableau suivant :

• 0 sinistre : 171 assurés,

• 1 sinistre : 202 assurés,

• 2 sinistres : 80 assurés,

• 3 sinistres : 36 assurés,

 \bullet > 4 sinistres : 11 assurés.

Nous souhaitons tester l'hypothèse H_0 : "la répartition des assurés suit une loi de Poisson de paramètre 1" au niveau de 95% en utilisant un test du χ^2 d'adéquation.

- 1. Rappeler le cadre général du test du χ^2 d'adéquation et expliquer intuitivement pourquoi il doit "marcher".
- 2. Donner q et la partition E_1, \ldots, E_q dans le cadre du présent exercice, ainsi que les valeurs p_1, \ldots, p_q .
- 3. Calculer la statistique du test et conclure.