Examen. Avril 2012

Les documents et calculatrices ne sont pas autorisés. Durée de l'épreuve : 3 heures.

Questions de cours

- 1. Vrai ou faux ? Le risque quadratique d'un estimateur est la variance. Donnez une justification pour votre réponse.
- 2. Pour estimer la variance inconnue d'un n-échantillon $X_1, \ldots X_n$ d'une loi inconnue, les deux estimateurs suivants sont utilisés :

$$\hat{s}_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2, \quad \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

et

$$\Sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2, \quad m = E(X_1).$$

Quand est-ce qu'on utilise le premier estimateur, quand le deuxième?

- 3. Donner la définition d'un modèle statistique dominé et de la vraisemblance d'un modèle. Comment est défini l'estimateur du maximum de vraisemblance? Pouvez-vous donner une motivation pour la définition de cet estimateur?
- 4. Donner la définition d'un modèle exponentiel et de la statistique exhaustive associée. Donner un exemple d'un tel modèle. Que peut-on dire sur l'estimation d'un paramètre inconnu dans un modèle exponentiel? (Donner l'énoncé du théorème de Lehmann-Scheffé.) Quelle est l'hypothèse essentielle sur la fonction $\alpha(\vartheta)$?

Exercice 1

On considère une variable aléatoire réelle X dont la densité par rapport à la mesure de Lebesgue est donnée par

$$f(x) = ce^{-\vartheta|x|}$$
 avec $\vartheta > 0$ et $c > 0$.

- 1. Calculer c pour que f soit bien une densité de probabilité.
- 2. Expliquer sans faire des calculs pourquoi E(X) = 0.
- 3. Calculer E(|X|).
- 4. Calculer la variance de X.
- 5. On observe un n-échantillon X_1, \ldots, X_n de la loi de X. Ecrire la vraisemblance de X_1, \ldots, X_n .
- 6. Donner la statistique exhaustive du modèle.

- 7. Est-ce que le modèle est régulier? Calculer l'information de Fisher.
- 8. Calculer l'estimateur $\hat{\vartheta}_n$ du maximum de vraisemblance de ϑ .
- 9. Justifier pourquoi $\hat{\vartheta}_n$ converge vers $1/E(|X_1|)$ presque sûrement lorsque n tend vers l'infini.
- 10. Commentaire?
- 11. Donner un intervalle de confiance asymptotique pour $1/\vartheta$. Rappel : Si U suit une loi $\mathcal{N}(0,1)$, alors

$$P(-1,96 \le U \le 1,96) = 0,95.$$

Exercice 2

Sur 9 individus issus d'une population donnée, le dosage du calcium sanguin a donné les résultats x_1, \ldots, x_9 avec $x_1 + \cdots + x_9 = 21, 6$ mmol/L et $x_1^2 + \cdots + x_9^2 = 51, 9048$ mmol²/L². On suppose que la loi de la probabilité de la calcémie dans cette population est une loi normale $\mathcal{N}(\mu, \sigma^2)$ avec les paramètres μ et σ^2 inconnus.

- 1) Calculer à la main la moyenne et la variance empirique de l'échantillon x_1, \ldots, x_9 .
- 2) Donner les estimations sans biais pour les paramètres μ et σ^2 .
- 3) Trouver un intervalle de confiance pour μ au risque de 5%. Rappel : si U_8 suit une loi de Student à 8 ddl, alors

$$P(-2,306 < U_8 < 2,306) = 0,95,$$

et si U_9 suit une loi de Student à 9 ddl, alors

$$P(-2, 2622 \le U_9 \le 2, 2622) = 0,95.$$

Laquelle des deux valeurs faut-il prendre? Donner l'intervalle de confiance sans faire les calculs - les formules sont suffisantes.

Exercice 3

Soient X_1, \ldots, X_n i.i.d. avec $X_i \sim U(0, \theta)$ où $U(0, \theta)$ est la loi uniforme sur l'intervalle $(0, \theta)$. On souhaite utiliser le théorème de Neyman-Pearson pour construire un test UPP pour $H_0 := \theta \le 1$ contre $H_1 := \theta > 1$, au niveau $\alpha \in (0, 1)$.

- 1. Ecrire la vraisemblance du modèle.
- 2. Fixer $\theta_0 = 1 < \theta_1$ et construire le test de Neyman-Pearson pour $\theta_0 = 1$ contre θ_1 .
- 3. Reécrire ce test en termes de $T := \max(X_1, \dots, X_n)$.
- 4. Determiner la constante qui intervient dans la définition du test pour obtenir un niveau α .
- 5. Montrer que le test ainsi construit ne dépend pas de θ_1 .
- 6. Montrer que pour $\theta < 1$, $E_{\theta}(\phi) \leq E_1(\phi)$. Conclure.

L'exercice suivant est supplémentaire et peut être ignoré si vous n'avez pas le temps de le traiter.

Exercice 4

(Exercice théorique).

Soient X_1, \ldots, X_n des variables aléatoires i.i.d., de moyenne m et de variance finie σ^2 . On suppose que \bar{X}_n et la variance empirique $\hat{s}_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ sont indépendants. Le but de cet exercice est de montrer que la loi de X_i est alors nécessairement la loi gaussienne $\mathcal{N}(m, \sigma^2)$.

On note ψ la fonction caractéristique de X_1 et on suppose que m=0.

1. Calculer $E(\hat{s}_n)$ en fonction de σ^2 . Montrer que pour tout réel t,

$$E[(n-1)\hat{s}_n e^{it\bar{X}_n}] = (n-1)\psi(t)^n \sigma^2.$$

2. Développer le terme $E[(n-1)\hat{s}_n e^{it\bar{X}_n}]$ et en déduire que ψ est solution de l'équation différentielle

$$\frac{\psi''}{\psi} - \left(\frac{\psi'}{\psi}\right)^2 = -\sigma^2, \psi(0) = 1, \psi'(0) = 0.$$

- 3. Soit $\varphi(t) = \psi'(t)/\psi(t)$. Montrer que $\varphi(t) = -\sigma^2 t$ (il convient de dériver φ). En déduire une forme explicite pour $\psi(t)$.
- 4. Rappelons que $U \sim \mathcal{N}(0, \sigma^2)$ si et seulement si $E(e^{itU}) = e^{-\sigma^2 t^2/2}$. (Ce résultat du cours de probabilités est admis.) Conclure.