Examen de Probabilités

(durée 3 heures)

Questions de Cours.

- 1) Rappeler les définitions des lois suivantes :
- a) Bernoulli, Binomiale, Poisson, Hypergéométrique (facultatif: rappeler le lien qui existent entre ces lois).
 - b)Uniforme sur un intervalle, Gamma, Exponentielle, Normale centrée réduite.
- 2) a) Rappeler l'inégalité de Bienaimé-Tchebychev.
- b) Montrer que si (X_n) est une suite de variables aléatoires indépendantes, de même loi et de carré intégrable, alors $Z_n = \frac{1}{n} max\{X_1, \dots, X_n\}$ tend vers 0 en probabilité.

Exercice 1.— Une variable aléatoire discrète X suit la loi Binomiale $\mathcal{B}(n,p)$. Les valeurs que prend X sont affichées sur un écran, mais celui-ci est défaillant. Lorsqu'il doit afficher 0, il affiche n'importe quelle valeur entre 1 et n, au hasard (le reste du temps, le compteur affiche la valeur exacte de X). Soit Y le numéro aléatoire affiché.

- a) Donner l'ensemble A de valeurs prises par Y, et calculer P(Y = k) pour tout $k \in A$.
- b) Montrer que $E(Y) = \left(\sum_{k=1}^n \frac{k}{n} q^n\right) + E(X)$. En déduire E(Y). c) L'écran affiche le chiffre 1. Quelle est alors la prpobabilité que la v.a. X ait pris réellement la
- valeur 1?

Exercice 2.– Soit (X,Y) un couple aléatoire de densité

$$f(x,y) = a(x+y)1_{[0,1]}(x)1_{[0,1]}(y)$$

- 1) Déterminer la constante a pour que f soit une densité de probabilité.
- 2) Déterminer la densité de la v.a. X ainsi que celle de Y.
- 3) X et Y sont-elles indépendantes?
- 4) Calculer E(X), E(Y), Cov(X, Y).
- 5) Soit maintenant le vecteur aléatoire (X, U) où U = X + Y.
- a) Donner, puis dessiner le domaine D de \mathbb{R}^2 dans lequel le couple aléatoire (X,U) prend ses valeurs?
 - b) Calculer la densité de probabilité de (X, U).
- c) Notons q(u) une densité de probabilité de U. Calculer la valeur de q(u) pour $u \in [0,1]$, puis pour $u \in]1, 2]$.

Exercice 3.— A la roulette, il y a 37 numéros : 0,1,2,...,36. Le 0 est vert, les pairs sont rouges, les impairs sont noirs. Si on joue 10 Euros sur le rouge, alors si le rouge tombe on empoche 20 Euros (on a donc gagné 10 Euros), sinon on empoche 0 Euros (on a donc gagné -10 Euros).

Un joueur joue 10 Euros sur le rouge à chaque coup.

- 1) Construire une variable aléatoire X_i pour modéliser le fait que le rouge tombe au i-ième coup. Quelle est sa loi, son espérance et sa variance.
- 2) Donner en fonction de X_i le gain aléatoire du joueur au *i*-ième coup, puis exprimer G_n , le gain accumulé par le joueur sur les n premiers coups en fonction des variables aléatoires $X_1, X_2, \dots X_n$.
- 3) Calculer $E(G_n)$ et $V(G_n)$.
- 5) Le joueur joue 1000 fois de suite. Par quelle loi peut-on approcher la loi de son gain accumulé? (justifier votre réponse).
- 6) En déduire approximativement la probabilité que ce gain soit strictement positif (aide numérique : F(0,85) = 0,80, où F est la fonction de répartition de la loi Normale centrée réduite).