Examen

La durée de cet examen est de deux heures. Les trois exercices sont indépendants. L'usage des calculatrices ainsi que de tout autre appareil électronique est interdit.

Questions de cours. (5 points)

- 1. Donner la définition d'un point fixe attractif d'une fonction $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$.
- 2. Étant donnée une fonction poids $w \in \mathcal{C}^0([-1,1],\mathbb{R}_+^*)$, considérons le produit scalaire

$$\forall (f,g) \in \mathcal{C}^0([-1,1],\mathbb{R})^2, \ \langle f,g \rangle = \int_{-1}^1 f(x) \, g(x) \, w(x) \, dx.$$

Donner la définition de la famille des polynômes orthogonaux $(P_n)_{n\geq 0}$ relative au produit scalaire $\langle \cdot, \cdot \rangle$.

- 3. Donner la formule de la méthode de quadrature élémentaire σ associée à des points deux à deux distincts ξ_0, \ldots, ξ_N de [-1, 1].
- 4. Définir une fonction Python Rectangle qui prend en entrée une fonction $f \in \mathcal{C}^0([a,b],\mathbb{R})$ et la liste $L = [x_0, \dots, x_N]$ des points d'une subdivision $x_0 = a < x_1 < \dots < x_N = b$ du segment [a,b] et renvoie la valeur approchée de l'intégrale $\int_a^b f(x) dx$ calculée par la méthode des rectangles à gauche.
- 5. Définir une fonction Python Euler qui prend en entrée une fonction $f \in \mathcal{C}^1([0,T] \times \mathbb{R}, \mathbb{R})$, une donnée initiale $y_0 \in \mathbb{R}$ et la liste $L = [t_0, \ldots, t_N]$ des points d'une subdivision $t_0 = 0 < t_1 < \ldots < t_N = T$ du segment [0,T] et renvoie la liste $Y = [y_0, \ldots, y_N]$ des valeurs approchées aux points $(t_n)_{0 \le n \le N}$ de la solution $y \in \mathcal{C}^1([0,T],\mathbb{R})$ du problème de Cauchy

$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = y_0, \end{cases}$$

calculées par la méthode d'Euler explicite.

Exercice 1. (6 points)

Soit

$$\forall x \in \mathbb{R}, \ f(x) = 2x + \sin(x) - 1.$$

- 1. Vérifier que la fonction f est de classe \mathcal{C}^{∞} sur \mathbb{R} et qu'elle possède un unique zéro α .
- 2. Vérifier que la suite $(x_n)_{n\geq 0}$ qui correspond à la méthode de Newton pour la fonction f est bien définie quelle que soit sa valeur initiale $x_0 \in \mathbb{R}$.
- 3.a. Soit $n \geq 0$. Vérifier qu'il existe un nombre $y_n \in [\alpha, x_n]$ tel que

$$x_{n+1} - \alpha = \frac{f''(y_n)}{2f'(x_n)} (x_n - \alpha)^2.$$

b. En déduire que

$$\forall n \ge 0, \left| x_{n+1} - \alpha \right| \le \frac{1}{2} \left| x_n - \alpha \right|^2.$$

c. Conclure que

$$\forall n \ge 0, \left| x_n - \alpha \right| \le 2 \left| \frac{x_0 - \alpha}{2} \right|^{2^n}.$$

d. Supposons que $|x_0 - \alpha| < 2$. La suite $(x_n)_{n \ge 0}$ est-elle convergente? Si oui, quelle est sa limite?

Exercice 2. (4 points)

Soit $(\lambda, \mu) \in \mathbb{R}^2$ et $-1 < \xi < 1$. Étant donnée une fonction $g \in \mathcal{C}^0([-1, 1], \mathbb{R})$, considérons la méthode de quadrature élémentaire

$$\sigma(g) = \lambda g(-1) + \mu g(\xi) + \lambda g(1).$$

1.a. Déterminer la valeur des nombres $\lambda,\,\mu$ et ξ afin que l'ordre de cette formule de quadrature soit maximal.

b. Quel est alors l'ordre p de cette méthode?

Dans toute la suite de cet exercice, nous fixons les nombres λ , μ et ξ afin que l'ordre de la méthode de quadrature élémentaire σ soit maximal.

2.a. Vérifier que le noyau de Peano K de cette méthode vaut

$$\forall y \in [-1, 1], K(y) = -\frac{1}{12} (1 + 3|y|) (1 - |y|)^3.$$

b. En déduire la formule de l'erreur E(g) associée à la méthode de quadrature élémentaire σ pour une fonction $g \in \mathcal{C}^{p+1}([-1,1],\mathbb{R})$.

Exercice 3. (5 points)

Soit T > 0 et $C \ge 0$. Considérons une fonction $f \in \mathcal{C}^0(\mathbb{R}^2, \mathbb{R})$ telle que

$$\forall t \in \mathbb{R}, \ \forall (y_1, y_2) \in \mathbb{R}^2, \ |f(t, y_1) - f(t, y_2)| \le C|y_1 - y_2|.$$

Étant donnée une condition initiale $y^0 \in \mathbb{R}$, nous nous intéressons à la résolution approchée du problème de Cauchy

$$\begin{cases} \forall t \in [0, T], \ y'(t) = f(t, y(t)), \\ y(0) = y^{0}. \end{cases}$$

Nous introduisons la méthode numérique définie par le schéma

$$y_0 = y^0$$
, et $\forall 0 \le n \le N - 1$,
$$\begin{cases} z_{n+1} = y_n + hf(t_n, y_n), \\ y_{n+1} = y_n + hf(t_{n+1}, z_{n+1}), \end{cases}$$

dans lequel nous avons noté h = T/N pour un entier $N \ge 1$, et $t_n = n h$ pour $0 \le n \le N$.

- 1. Vérifier que cette méthode est une méthode à un pas de type explicite.
- 2.a. Cette méthode est-elle consistante?
- b. Donner une condition sur le pas h pour que cette méthode soit stable.
- c. En déduire que cette méthode est convergente sous cette condition sur le pas h.
- 3. Quel est l'ordre de cette méthode?