Examen - Séries de Fourier et Analyse Complexe

Durée: 2h00 - Documents, calculatrice, ordinateur et téléphone portable ne sont pas autorisés. Les 4 exercices sont indépendants.

Exercice I

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique définie par $f(x) = x \sin x$ pour $x \in]-\pi,\pi]$ (étendue à \mathbb{R} par périodicité). Pour $n \geq 1$, on note a_n le coefficient de $\cos(nx)$, $a_0/2$ le coefficient constant et b_n le coefficient de $\sin(nx)$ dans la série de Fourier de f.

- 1) Étudier la parité de f. Que vaut b_n pour $n \ge 1$?
- 2) Calculer a_n pour $n \in \mathbb{N}$ (on pourra utiliser la formule $2\sin(a)\cos(b) = \sin(a-b) + \sin(a+b)$). On distinguera le cas n = 1 des cas n = 0 et $n \ge 2$.
- 3) Justifier, pour tout $x \in]-\pi,\pi[$, l'égalité

$$f(x) = 1 - \frac{\cos(x)}{2} + \sum_{n=2}^{+\infty} \frac{2(-1)^{n+1}}{n^2 - 1} \cos(nx).$$

4) En déduire la valeur de la somme $S = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n^2 - 1}$.

Exercice II

Soit $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^3 + \bar{z}^3$.

- 1) Montrer que pour tout $z \in \mathbb{C}$, $f(z) \in \mathbb{R}$.
- 2) En déduire qu'il n'existe pas d'ouvert Ω non-vide de $\mathbb C$ tel que f soit holomorphe sur Ω .

Exercice III

Soit $n \in \mathbb{N}$. On veut résoudre l'équation $\bar{z} = z^{2n-1}$, d'inconnue $z \in \mathbb{C}$.

- 1) Résoudre l'équation dans le cas n = 0 puis n = 1.
- 2) Dans le cas $n \ge 2$, montrer que toute solution $z \ne 0$ vérifie |z| = 1. En déduire l'ensemble des solutions.

Exercice IV

Soit f la fonction complexe définie par $f(z) = \frac{z}{z^2 + 3z + 2}$. Pour R > 0, on note $\gamma_R = \partial B(0, R)$ le cercle de centre 0 et de rayon R > 0, orienté dans le sens trigonométrique direct.

- 1) Quel est le domaine de définition D de la fonction f? La fonction f est-elle holomorphe sur D?
- 2) En déduire que l'on a $\int_{\gamma_{1/2}} f(z)dz = 0$.
- 3) Décomposer la fraction rationnelle f en éléments simples.
- 4) a) Montrer sans calcul que f est développable en série entière sur une boule ouverte B(i, r) centrée au point i avec r > 0 et préciser le rayon r maximal.
- b) Donner le développement en série entière de f autour du point i (on pourra utiliser le résultat obtenu à la question 3).
- 5) Donner le développement en série de Laurent de f autour du point -1. Montrer qu'il converge sur un disque privé de son centre -1, et d'un rayon que l'on précisera. Quelle est la valeur du résidu en z = -1?
- 6) Rappeler la formule de Cauchy et montrer à l'aide de celle-ci que $\int_{\gamma_3} \frac{1}{z+2} dz = 2\pi i$ puis déduire de la question 3) que $\int_{\gamma_3} f(z)dz = 2\pi i$.
- 7) En écrivant la formule des résidus pour $\int_{\gamma_3} f(z)dz$, en déduire la valeur du résidu en z=-2.