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Exercice 1 (4 points).

a) (1,5 pts) Donner la définition de la décomposition de Dunford pour une matrice A ∈Mn(C).
On considère

A =

1 0 0
2 1 0
0 2 1

 ∈M3(C).

b) (1 pt) Déterminer la décomposition de Dunford de A. (Vous devez justifier que la décomposition
que vous proposez est bien une décomposition de Dunford.)

c) (1,5 pts) Calculer exp(A).

Solution :
a) Pour une matrice A ∈ Mn(C), une décomposition de Dunford est une écriture A = S +N avec

S,N ∈Mn(C), où
• S est diagonalisable,
• N est nilpotente,
• S et N commutent, c’est-à-dire SN = NS.

b) Montrons que

S = I =

1 0 0
0 1 0
0 0 1

 et N =

0 0 0
2 0 0
0 2 0


conviennent. La matrice N est nilpotente car N3 = 0. La matrice S = I est diagonalisable et commute
avec toute matrice, en particulier avec N .

c) Comme S et N commutent, on a

exp(A) = exp(S +N) = exp(S)exp(N).

On a S = I, donc
exp(S) = exp(I) = eI.

Comme N3 = 0, le développement en série de l’exponentielle donne

exp(N) = I +N +
1

2
N2.

On en déduit

exp(N) =

1 0 0
0 1 0
0 0 1

+

0 0 0
2 0 0
0 2 0

+
1

2

0 0 0
0 0 0
4 0 0

 =

1 0 0
2 1 0
2 2 1

 .

Ainsi

exp(A) = exp(S)exp(N) = e ·

1 0 0
2 1 0
2 2 1

 .



Exercice 2 (3,5 points). On considère la matrice

A =


1 1 0 0 0
1 1 0 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2

 ∈M5(C).

a) (2 pts) Déterminer le polynôme minimal de A.

b) (1,5 pts) Calculer (A2 − 2A)2027.

Solution.
Remarque. La matrice de cet exercice n’est clairement pas de Jordan.
a) On remarque que A est une matrice diagonale par blocs de la forme

A =

(
B 0
0 C

)
avec

B =

(
1 1
1 1

)
, C =

2 1 0
0 2 1
0 0 2

 .

Le polynôme minimal de A est donc le plus petit polynôme unitaire qui annule B et C.
On a B2 = 2B, d’où µB(x) = x2 − 2x = x(x − 2). On a C = J3(2), d’où µC(x) = (x − 2)3. On a

donc
µA(x) = ppcm(µB(x), µC(x)) = x(x− 2)3.

b) Le polynôme (x2 − 2x)2007 = x2007(x− 2)2007 est divisible par µA(x) = x(x− 2)3. Cela implique

(A2 − 2A)2027 = 0.

Exercice 3 (4 points). On considère la matrice

A =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

a) (1 pt) Calculer A4.

b) (1,5 pts) En déduire que A est diagonalisable.

c) (1,5 pts) Démontrer que A a 4 valeurs propres différentes et donner ses valeurs propres.

Solution :
a) On calcule successivement

A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , A3 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , A4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I.

b) On a A4 = I, donc A est annulée par

x4 − 1 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x− i)(x+ i),

qui est scindé sur C et a des racines simples. Donc A est diagonalisable sur C.
Remarque. Il est inutile de mentionner Cayley-Hamilton ici.

c) Les matrices I, A,A2, A3 sont clairement linéairement indépendantes. Donc il n’existe pas de
polynôme annulateur de A de degré ≤ 3. Ainsi x4 − 1 est le polynôme minimal de A. Les valeurs
propres sont exactement les racines du polynôme minimal : 1, −1, i, −i.



Remarque. On ne peut pas déduire c) de a) et b) immédiatement. On sait que x4−1 est un polynôme
annulateur, mais il faut vérifier que c’est aussi le polynôme minimal. Sinon, on peut imaginer la
situation où le polynôme minimal µA(x) est seulement un diviseur de x4 − 1.

On sait bien que µA(x) divise x4 − 1 et χA(x), et que x4 − 1 et χA(x) sont de même degré. Mais
cela n’implique pas encore que χA(x) = x4 − 1.

Exercice 4 (3 points). Soit A une matrice carrée complexe telle que

χA(x) = −(x− 5)3(x− 8)4 et µA(x) = (x− 5)2(x− 8)2.

a) (1,5 pts) Déterminer les formes de Jordan possibles de A.

b) (1,5 pts) On ajoute l’information rg(A− 8I) = 5. Déterminer alors la forme de Jordan de A.

Solution :
On a

χA(x) = −(x− 5)3(x− 8)4, µA(x) = (x− 5)2(x− 8)2.

a) Pour la valeur propre 5, la multiplicité algébrique est 3 et la taille maximale des blocs de Jordan
est 2. On a donc un bloc J2(5) et un bloc J1(5).

Pour la valeur propre 8, la multiplicité algébrique est 4 et la taille maximale des blocs est 2. On a
donc un bloc J2(8) et
• soit un second bloc J2(8),
• soit deux blocs J1(8).

Ainsi, il y a deux formes de Jordan possibles pour A (à permutation des blocs près) :

J (1) =



5 1 0 0 0 0 0
0 5 0 0 0 0 0
0 0 5 0 0 0 0
0 0 0 8 1 0 0
0 0 0 0 8 0 0
0 0 0 0 0 8 1
0 0 0 0 0 0 8


, J (2) =



5 1 0 0 0 0 0
0 5 0 0 0 0 0
0 0 5 0 0 0 0
0 0 0 8 1 0 0
0 0 0 0 8 0 0
0 0 0 0 0 8 0
0 0 0 0 0 0 8


.

b) Méthode 1. On remarque d’abord que la quantité rg(A− 8I) = rg(f − 8Id) ne dépend pas de la
base. On a

rg(J (1) − 8I) = 5, rg(J (2) − 8I) = 4.

Ainsi, la forme de Jordan de A est J (1).

Méthode 2. Le nombre de blocs de Jordan de la valeur propre 8 est égal à

dimE8 = dim ker(A− 8I) = 7− rg(A− 8I) = 7− 5 = 2.

La bonne forme de Jordan de A est donc J (1).

Exercice 5 (3 points). Soit f ∈ L(E) un endomorphisme d’un espace hermitien (E, 〈·, ·〉) tel que
f∗ = if .

a) (1,5 pts) Démontrer que toute valeur propre λ de f vérifie λ = iλ.

b) (1,5 pts) Soient λ, µ deux valeurs propres différentes de f . Démontrer que tout vecteur de Eλ est
orthogonal à tout vecteur de Eµ.

Solution :
Soit f ∈ L(E) avec f∗ = if .
a) Soit λ une valeur propre de f et x 6= 0 un vecteur propre, f(x) = λx. Alors

〈f(x), x〉 = 〈x, f∗(x)〉 = 〈x, if(x)〉 = 〈x, iλx〉 = iλ 〈x, x〉.
D’autre part,

〈f(x), x〉 = 〈λx, x〉 = λ 〈x, x〉.
Comme 〈x, x〉 6= 0, on obtient λ = iλ.



b) Soient λ 6= µ, x ∈ Eλ et y ∈ Eµ. On a

〈f(x), y〉 = 〈x, f∗(y)〉 = 〈x, if(y)〉 = 〈x, iµy〉 = iµ 〈x, y〉.
Mais aussi

〈f(x), y〉 = 〈λx, y〉 = λ 〈x, y〉.
Donc

λ 〈x, y〉 = iµ 〈x, y〉.
Or µ = iµ d’après a), on a

λ 〈x, y〉 = µ 〈x, y〉.
Comme λ 6= µ, on obtient 〈x, y〉 = 0.

Exercice 6 (4,5 points). On considère l’espace vectoriel E = C2. Soit ϕ : E × E → C une forme
sesquilinéaire telle que la matrice de Gram de ϕ dans la base ((1, 2), (1, 0)) est

G =

(
2 i
−i −1

)
.

a) (1,5 pts) La forme ϕ est-elle hermitienne ?

b) (1,5 pts) La forme ϕ est-elle définie positive ?

c) (1,5 pts) Écrire une formule explicite pour ϕ((x1, x2), (y1, y2)).

Solution :
a) La forme ϕ est hermitienne parce que la matrice de Gram G est hermitienne : G = G∗.

b) La forme ϕ n’est pas définie positive parce que ϕ((1, 0), (1, 0)) = −1 < 0.

c) On a ϕ((1, 0), (1, 0)) = −1.
On a

i = ϕ((1, 2), (1, 0)) = ϕ((1, 0), (1, 0)) + 2ϕ((0, 1), (1, 0)) = −1 + 2ϕ((0, 1), (1, 0)),

d’où ϕ((0, 1), (1, 0)) =
1 + i

2
et, par hermitianité,

ϕ((1, 0), (0, 1)) = ϕ((0, 1), (1, 0)) =
1− i

2
.

Enfin,

2 = ϕ((1, 2), (1, 2)) = ϕ((1, 0), (1, 0)) + 2ϕ((1, 0), (0, 1)) + 2ϕ((0, 1), (1, 0)) + 4ϕ((0, 1), (0, 1))

= −1 + 2 · 1− i
2

+ 2 · 1 + i

2
+ 4ϕ((0, 1), (0, 1)) = 1 + 4ϕ((0, 1), (0, 1)),

et ainsi ϕ((0, 1), (0, 1)) =
1

4
.

Donc la matrice de Gram de ϕ dans la base canonique est

G′ =

(
ϕ((1, 0), (1, 0)) ϕ((1, 0), (0, 1))
ϕ((0, 1), (0, 1)) ϕ((0, 1), (0, 1))

)
=

(
−1 (1− i)/2

(1 + i)/2 1/4

)
.

Donc

ϕ((x1, x2), (y1, y2)) =
(
x1 x2

)( −1 (1− i)/2
(1 + i)/2 1/4

)(
y1
y2

)
= −x1y1+

1− i
2

x1y2+
1 + i

2
x2y1+

1

4
x2y2.


