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Chaque réponse doit étre justifiée

Exercice 1 (4 points).
a) (1,5 pts) Donner la définition de la décomposition de Dunford pour une matrice A € M,,(C).
On considere

1 00
A=1|2 1 0] € M3(C).
0 21

b) (1 pt) Déterminer la décomposition de Dunford de A. (Vous devez justifier que la décomposition
que vous proposez est bien une décomposition de Dunford.)

c) (1,5 pts) Calculer exp(A).

Solution :
a) Pour une matrice A € M,,(C), une décomposition de Dunford est une écriture A =S + N avec
S,N € M,(C), ou
e S est diagonalisable,
e N est nilpotente,
e S et N commutent, c’est-a-dire SN = NS.

b) Montrons que

1 00 00
S=I=(0 1 0 et N=1[12 0
0 01 0 2

~ O O O

conviennent. La matrice N est nilpotente car N3 = 0. La matrice S = I est diagonalisable et commute

avec toute matrice, en particulier avec V.

¢) Comme S et N commutent, on a
exp(A) = exp(S + N) = exp(S5)exp(N).

On a S =1, donc
exp(S) = exp(I) =el.
Comme N2 = 0, le développement en série de I'exponentielle donne

1
exp(N)=1+ N + 5N2.

On en déduit

100 000\ /000 100
exp(N) =0 1 0 +{2 0 0]+5{000)=|210
00 1 020 40 0 2 2 1

Ainsi

exp(A) = exp(S)exp(N) =e-

N DN =
N = O
= o O



Exercice 2 (3,5 points). On considére la matrice

11000
11000

A=10 0 2 1 0] eMs(C).
000 21
0000 2

a) (2 pts) Déterminer le polynéme minimal de A.
b) (1,5 pts) Calculer (A% — 2A4)2927,
Solution.

Remarque. La matrice de cet exercice n’est clairement pas de Jordan.
a) On remarque que A est une matrice diagonale par blocs de la forme

(0 ¢)

2 10
B = G 1) , cC=(0 2 1
0 0 2
Le polynéome minimal de A est donc le plus petit polynéme unitaire qui annule B et C.

On a B% = 2B, d’'ott up(z) = 22 — 2z = 2(r — 2). On a C = J3(2), d'ott puc(z) = (z — 2)%. On a
donc

avec

pa(z) = ppem(pg (), po(@)) = z(z — 2)°.

b) Le polynome (2?2 — 2x)2007 = 220073 — 2)2007 egt divisible par pa(x) = z(x — 2)3. Cela implique
(A = 24)*%7 = 0.

Exercice 3 (4 points). On considere la matrice
0

A=

OO O
OO~ O
SO = OO

0
0
1

a) (1 pt) Calculer A%.
b) (1,5 pts) En déduire que A est diagonalisable.
c) (1,5 pts) Démontrer que A a 4 valeurs propres différentes et donner ses valeurs propres.

Solution :
a) On calcule successivement
0010 0 001 1 000
2 |0 0 01 3 |1 0 0 0 4 |0 1 0 0] _
A= 1 00 0" A= 010 0]} A= 00 10] L
0100 0010 0 001

b) On a A* = I, donc A est annulée par
gt —1= (2" = 1)(@* + 1) = (z — 1)(z + )(z —i)(z +1),

qui est scindé sur C et a des racines simples. Donc A est diagonalisable sur C.
Remarque. 11 est inutile de mentionner Cayley-Hamilton ici.

¢) Les matrices I, A, A%, A3 sont clairement linéairement indépendantes. Donc il n’existe pas de
polynoéme annulateur de A de degré < 3. Ainsi 2* — 1 est le polynome minimal de A. Les valeurs
propres sont exactement les racines du polynéme minimal : 1, —1, 7, —1.



Remarque. On ne peut pas déduire ¢) de a) et b) immédiatement. On sait que z# —1 est un polynéme
annulateur, mais il faut vérifier que c’est aussi le polynéme minimal. Sinon, on peut imaginer la
situation ot le polynéme minimal p4(z) est seulement un diviseur de x4 — 1.

On sait bien que pa(x) divise 2% — 1 et xa(x), et que 2* — 1 et ya(z) sont de méme degré. Mais
cela n’implique pas encore que xa(z) = 2% — 1.

Exercice 4 (3 points). Soit A une matrice carrée complexe telle que
xa(z) = —(z —5)3(z — 8)* et pa(z) = (z—5)%(z —8)2

a) (1,5 pts) Déterminer les formes de Jordan possibles de A.
b) (1,5 pts) On ajoute 'information rg(A — 87) = 5. Déterminer alors la forme de Jordan de A.

Solution :

On a

al@) = —(@ = 5@ —8),  pale) = (& - 5)(x - 8)%

a) Pour la valeur propre 5, la multiplicité algébrique est 3 et la taille maximale des blocs de Jordan
est 2. On a donc un bloc J3(5) et un bloc Ji(5).

Pour la valeur propre 8, la multiplicité algébrique est 4 et la taille maximale des blocs est 2. On a
donc un bloc J5(8) et

e soit un second bloc J2(8),

e soit deux blocs Ji(8).
Ainsi, il y a deux formes de Jordan possibles pour A (& permutation des blocs pres) :

5 1]0/0 0]0 0 5 1]0]l0 0]0]0
0 5/0/0 0[0 0 0 5/0[0 0[0]0
0 0/5/0 0/0 0 0 0/5]0 0[0]0
JY =70 o0l0o[8 1[0 0 [, JA =70 0[0[8 1[0]0
0 0/0/0 8/0 0 0 0/0[0 8[0]0
0 0]0/0 0[8 1 0 0/]0]0 0[8]0
0 0/0/0 00 8 0 000 0[0]8

b) Méthode 1. On remarque d’abord que la quantité rg(A — 81) = rg(f — 81d) ne dépend pas de la
base. On a
rg(JW —81) =5, rg(J® —8I)=4.
Ainsi, la forme de Jordan de A est JW).
Méthode 2. Le nombre de blocs de Jordan de la valeur propre 8 est égal a
dim Fg = dimker(A —8]) =7 —1g(A—-8])=7—-5=2.

La bonne forme de Jordan de A est donc JW.

Exercice 5 (3 points). Soit f € L£(F) un endomorphisme d’un espace hermitien (E, (-,-)) tel que
fr=if.
a) (1,5 pts) Démontrer que toute valeur propre A de f vérifie X = i\.
b) (1,5 pts) Soient A, u deux valeurs propres différentes de f. Démontrer que tout vecteur de E) est
orthogonal a tout vecteur de E),.

Solution :

Soit f € L(FE) avec f* =if.

a) Soit A une valeur propre de f et 2 # 0 un vecteur propre, f(x) = Az. Alors

(f(z),2) = (z, f*(2)) = (@,if(z)) = (z,iAz) = i) (z, 7).
D’autre part,

(f(@),7) = (\z,2) = X (2, 2).
Comme (x,z) # 0, on obtient A = i\.



b) Soient A\ # p, x € Ex et y € E,. On a

Mais aussi B
(f(),y) = (Az,y) = Az, y).

Mz, y) =ip (2, y).

Donc

Or 7z = ip d’apres a), on a B

A, y) =1z, y).
Comme A # pu, on obtient (x,y) = 0.

Exercice 6 (4,5 points). On considere l'espace vectoriel E = C2. Soit ¢: E x E — C une forme
sesquilinéaire telle que la matrice de Gram de ¢ dans la base ((1,2),(1,0)) est

2 1
¢= (—z’ —1) '
a) (1,5 pts) La forme ¢ est-elle hermitienne ?
b) (1,5 pts) La forme ¢ est-elle définie positive ?
c) (1,5 pts) Ecrire une formule explicite pour ¢((x1,22), (y1,y2))-
Solution :
a) La forme ¢ est hermitienne parce que la matrice de Gram G est hermitienne : G = G*.

b) La forme ¢ n’est pas définie positive parce que ¢((1,0),(1,0)) = -1 < 0.

¢) On a ¢((1,0),(1,0)) = —1.
On a

@ = 90(<17 2)’ (17 0)) - 90((170)’ (17 0)) + 2‘/)((0’ 1)7 (170)) =-—-1+ 290((07 1)7 (17 O)),

doit ((0,1), (1,0)) =

et, par hermitianité,

0((1,0), (0,1)) = ((0, 1), (1,0)) = 1-

Enfin,
2=¢((1,2),(1,2)) = ¢((1,0),(1,0)) + 2¢((1,0), (0,1)) + 2¢((0, 1), (1,0)) + 4((0, 1), (0, 1))

=—-1+2. 1_7;—1-2- 1+i—|—4<p((0,1),((),1)):1+4cp((0,1),(0,1)),

2 2

ot ainsi ((0, 1, (0,1)) = %

Donc la matrice de Gram de ¢ dans la base canonique est

! 90((170)’(1a0)) 90((170)7(071)) _ -1 (1_i)/2
“= <<p((07 1),(0,1)) (0, 1),(071))> a ((1+i)/2 1/4 )

Donc

(w1, 22), (y1,92)) = (@1 7o) ((1 Iy (1 I/Z)/Q) <y1> B S S W

Y2 2 2 4



