Examen Final: Séries

Correction

Question de cours(3pt)

Rappeler la définition de la convergence simple d'une suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur I vers une fonction f sur un intervalle I.

On dit qu'une suite de de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur I convergent simplement vers une fonction f sur l'intervalle I si pour tout $x \in I$, les suites numériques $(f_n(x))_{n \in \mathbb{N}}$ convergent vers f(x).

Montrer que si une suite de fonctions paires $(f_n)_{n\in\mathbb{N}}$ définies sur \mathbb{R} converge simplement vers une fonction f sur \mathbb{R} alors f est paire.

Par hypothèses, pour tout $x \in \mathbb{R}$ on sait :

- pour tout $n, f_n(x) = f_n(-x)$
- $-\lim_{\substack{n \to +\infty \\ -\lim_{n \to +\infty}}} f_n(x) = f(x)$

donc par unicité de la limite on a f(x) = f(-x). Donc f est paire.

Exercice 1 Séries numériques (6pts)

1)(1,5pts) Donner la nature de la série de terme général $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, u_n = \frac{n + \sqrt{n}}{n^2 + n + 1}.$$

On vérifie facilement que $u_n \sim \frac{1}{n}$ or par Riemann, on sait que la série numérique $\sum \frac{1}{n}$ diverge. Donc par comparaison de séries numériques à termes généraux de signe constant, $\sum u_n$ diverge.

 $\overline{2)}(3\text{pts})$ On définit la suite $(v_n)_{n\in\mathbb{N}^*}$ en posant pour tout $n\in\mathbb{N}^*$,

$$v_n = \frac{n!}{(2n)^n}.$$

a) Montrer que $\frac{v_{n+1}}{v_n} = \frac{1}{2(1+\frac{1}{n})^n}$.

Par définition on a

$$\frac{v_{n+1}}{v_n} = \frac{(n+1)!}{(2(n+1))^{(n+1)}} \times \frac{(2n)^n}{n!}$$

$$= \frac{(n+1).n!}{2^{(n+1)}(n+1)^{(n+1)}} \cdot \frac{2^n.n^n}{n!}$$

$$= \frac{(n+1).n^n}{2(n+1)(n+1)^n}$$

$$= \frac{1}{2} \left(\frac{n}{n+1}\right)^n$$

$$= \frac{1}{2(1+\frac{1}{n})^n}$$

b) En déduire que $\left(\frac{v_{n+1}}{v_n}\right)_{n\in\mathbb{N}^*}$ admet une limite que l'on précisera.

On sait que la suite numérique $\left((1+\frac{1}{n})^n\right)_{n\in\mathbb{N}^*}$ converge vers e. Donc $\left(\frac{v_{n+1}}{v_n}\right)_{n\in\mathbb{N}^*}$ converge vers $\frac{1}{2e}$.

c) \widetilde{Q} uelle est la nature de la série de terme général $(v_n)_{n\in\mathbb{N}^*}$?

On vient de montrer que $\left(\frac{v_{n+1}}{v_n}\right)_{n\in\mathbb{N}^*}$ admet une limite l<1 donc par le critère de d'Alembert la série numérique $\sum v_n$ converge.

3)(1,5pts) Donner la nature de la série de terme général $(w_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, w_n = (-1)^n \ \frac{n+1}{n^2}.$$

On reconnait une série alternée. En notant que $|w_n| = \frac{1}{n} + \frac{1}{n^2}$, il est immédiat que la suite $(|w_n|)_{n \in \mathbb{N}^*}$ décroit vers 0. Donc la série numérique $\sum w_n$ converge.

Exercice 2 Séries entières (5pts)

On considère la série entière $\sum a_n x^n$ avec $a_0 = 1$ et $a_n = \frac{(-1)^n}{n}$ pour tout $n \ge 1$.

1) Donner le rayon de convergence, R, de la série entière $\sum a_n x^n$. Précisez si la série converge en R ou -R.

On peut utiliser le critère de d'Alembert pour les séries entières. On vérifie facilement que la suite $\left(\frac{a_{n+1}}{a_n}\right)_{n\in\mathbb{N}}$ converge vers -1, or dans ce cas $R=\frac{1}{\lim\left|\frac{a_{n+1}}{a_n}\right|}=1$.

Pour x = 1, on étudie la série numérique $\sum \frac{(-1)^n}{n}$ qui selon le critère des séries alternées converge.

Pour x = -1, on étudie la série numérique $\sum \frac{1}{n}$ qui selon les séries Riemann diverge.

On note alors, quand la série converge, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

2) Rappeler pour quoi f est dérivable sur] -R, R[. Exprimer f' à l'aide d'une série entière. On sait que les séries entières sont C^{∞} à l'intérieur du disque de convergence. f est donc dérivable sur] -1, 1[.

De plus on sait que pour tout $x \in]-1,1[, f'(x) = \sum_{n=1}^{\infty} n \frac{(-1)^n}{n} x^{(n-1)}$. Donc pour tout $x \in]-1,1[$

$$f'(x) = \sum_{n=0}^{\infty} (-1)^{(n+1)} x^n.$$

3) En déduire une expression explicite de f' puis de f. Selon l'expression précédente, on peut écrire pour tout $x \in]-1,1[$

$$f'(x) = -\sum_{n=0}^{\infty} (-x)^n,$$

= $\frac{-1}{1+x}$ (c'est une série géométrique de raison $-x$).

On en déduit qu'il existe une constante telle que $f(x) = -\ln(1+x) + k$. Or $f(0) = a_0 = 1$, on en déduit que pour tout $x \in]-1,1],$

$$f(x) = 1 - \ln(1 + x).$$

Exercice 3 Séries de fonctions (6pts)

On souhaite étudier la série de fonctions définies sur]-1,1] de terme général $(f_n)_{n\in\mathbb{N}^*}$ οù

$$\forall x \in]-1,1], \quad f_n(x) = \frac{1}{n^{\alpha}} x^{2n} (1-x),$$

et $\alpha > 0$ est un réel fixé.

- 1)(1,5pts) Etude de la convergence simple sur]-1;1].
 - a) Étudier la convergence des deux séries numériques $\sum f_n(0)$ et $\sum f_n(1)$.

On remarque que pour tout n, $f_n(0) = f_n(1) = 0$, donc les deux séries numériques $\sum f_n(0)$ et $\sum f_n(1)$ convergent (elles sont constantes à 0). b) $Soit \ x \in]-1,0[\cup]0,1[$ fixé. En utilisant le critère de d'Alembert, préciser pour quelles

valeurs de α , la série numérique $\sum f_n(x)$ converge.

On obtient par un simple calcul que $\frac{f_{n+1}(x)}{f_n(x)} = x^2 \left(\frac{n}{n+1}\right)^{\alpha}$. Donc la suite $\left(\frac{f_{n+1}(x)}{f_n(x)}\right)_{n \in \mathbb{N}^*}$ converge vers x^2 . Comme $x \in]-1,0[\cup]0,1[,x^2<1$ et par le critère de d'Alembert, la série numérique $\sum f_n(x)$ converge pour tout α .

- c) Pour quelles valeurs de α la série est-elle simplement convergente sur]-1,1]? On vient de vérifier que pour tout $\alpha > 0$ (en fait c'est même vrai pour tout $\alpha \in \mathbb{R}$), et pour tout $x \in]-1,1] \sum f_n(x)$ converge. Donc pour tout $\alpha > 0$, la série de fonctions $\sum f_n$ converge simplement sur]-1,1].
- 2)(1pt) Tableau de variation sur [-1,1].

Soit $n \ge 1$ fixé, donner le tableau de variation de la fonction f_n sur]-1,1].

La fonction f_n est dérivable. En notant que pour tout $x \in]-1,1]$ $f_n(x) = \frac{1}{n^{\alpha}}(x^{2n} - x^{2n+1})$ on en déduit

$$f'_n(x) = \frac{1}{n^{\alpha}} (2nx^{2n-1} - (2n+1)x^{2n})$$
$$= \frac{1}{n^{\alpha}} x^{2n-1} (2n - (2n+1)x).$$

 f'_n s'annule donc en 0 et $\frac{2n}{2n+1}$. f_n est décroissante sur]-1,0], croissante sur $[0,\frac{2n}{2n+1}]$ et décroissante sur $\left[\frac{2n}{2n+1},1\right]$.

- 3) (1,5pts) Etude de la convergence normale sur [-1,0].
- a) En utilisant le tableau de variation précédent, montrer qu'il existe une constante C, que l'on précisera, telle que $\sup_{x \in]-1,0]} |f_n(x)| = \frac{C}{n^{\alpha}}.$

Selon l'étude précédente pour tout n, f_n est décroissante sur]-1,0], on en déduit que $\sup_{|x| \to 0} |f_n(x)| = f_n(-1) = \frac{2}{n^{\alpha}}.$ On obtient bien le résultat attendu avec C = 2.

b) Pour quelles valeurs de α la série est-elle normalement convergente sur]-1,0]? Par défintion la série converge normalement sur]-1,0] si $\sum \sup_{x\in]-1,0]} |f_n(x)|$ converge et donc si et seulement $\sum \frac{2}{n^{\alpha}}$ converge. Selon le résultats sur les séries de Riemann, on en déduit que la série converge normalement sur]-1,0] si et seulement si $\alpha > 1$.

4)(2pts) Etude de la convergence normale sur [0,1].

a) Soit $n \ge 1$ fixé, en utilisant la question 2) donner le maximum de f_n sur [0,1]. Selon les variations sur [0,1], le maximum est atteint en $\frac{2n}{2n+1}$ et vaut donc

$$f_n(\frac{2n}{2n+1}) = \frac{1}{n^{\alpha}} \left(\frac{2n}{2n+1}\right)^{2n} \left(1 - \frac{2n}{2n+1}\right)$$
$$= \frac{1}{n^{\alpha}} \left(\frac{2n}{2n+1}\right)^{2n} \frac{1}{2n+1}$$

b) Montrer que la suite $\left(\left(1+\frac{1}{2n}\right)^n\right)_{n\in\mathbb{N}^*}$ converge vers une limite l que l'on précisera. En notant que $\left(1+\frac{1}{2n}\right)^n=\exp(n\ln(1+\frac{1}{2n}))$ et en utilisant le développement limité $\ln(1+x)=x+o(x)$ au voisinage de 0, on en déduit que $\left(\left(1+\frac{1}{2n}\right)^n\right)_{n\in\mathbb{N}^*}$ converge vers $e^{\frac{1}{2}}$. c) En déduire qu'il existe un réel k>0 tel que $\sup_{x\in[0,1]}|f_n(x)|\sim\frac{k}{n^{\alpha+1}}$ (on pourra écrire $(\frac{2n}{2n+1})^n$ en fonction de $(1+\frac{1}{2n})^n$). Selon la question 4-a),

$$\sup_{x \in [0,1]} |f_n(x)| = \frac{1}{n^{\alpha}} \left(\frac{2n}{2n+1}\right)^{2n} \frac{1}{2n+1}$$
$$= \frac{1}{n^{\alpha}} \left(\frac{1}{1+\frac{1}{2n}}\right)^{2n} \frac{1}{2n+1}$$
$$\sim \frac{1}{2en^{\alpha+1}}$$

car selon la question précédente $\left(\left(1+\frac{1}{2n}\right)^{2n}\right)_{n\in\mathbb{N}^*}$ converge vers e.

On obtient le résultat attendu avec $k = \frac{1}{2e}$.

d) Pour quelles valeurs de α la série est-elle normalement convergente sur [0,1]? Selon la question précédente la série converge normalement sur [0,1], si et seulement si $\alpha+1>1$ soit pour $\alpha>0$.