Emmanuel Hebey Année 2023-2024

Intégration Examen - Session 1 (Durée 2 heures)

(Le barème est donné à titre indicatif)

(Les notes supérieures à 20 sont ramenées à 20)

(Les documents et les calculatrices sont interdits)

Exercice 1: (3 pts) Soit $\alpha \ge 1$ un réel. Etudier, en fonction de $\alpha \ge 1$, la convergence de l'intégrale généralisée

$$I_{\alpha} = \int_{0}^{+\infty} \frac{x^7 + 5x^3 + 3x + 1}{\sqrt{x}(3x^{\alpha} + 4x + 1)} dx .$$

Justifier vos réponses et préciser en quelle(s) borne(s) I_{α} est généralisée.

Exercice 2: (1) (4 pts) Pour A > 0, calculer

$$I_A = \int_0^A \frac{x^4 + 6x^3 + 11x^2 + 13x + 9}{(x+1)(x+2)^2(x^2+1)} dx$$
.

En déduire la valeur de la limite $\lim_{A\to +\infty} (I_A - \ln(1+A))$.

(2) (3 pts) Calculer, en justifiant, la limite

$$\ell = \lim_{n \to +\infty} \int_{1}^{+\infty} \frac{n^2 x^4 + 3x^2 + 7}{(n^2 x^4 + 3)(x^2 + 1)} dx .$$

Exercice 3: Soit $D \subset \mathbb{R}^2$ donné par

$$D = \{(x,y) \in \mathbb{R}^2 \ / \ -1 \le x \le 1, x \le y \le x^2 + 1\} \ .$$

- (1) (2 pts) Calculer l'aire de D.
- (2) (2 pts) Calculer l'intégrale double $I = \iint_D xy dx dy$.
- (3) (2 pts) Soit $\tilde{D} = \{(x,y) \in \mathbb{R}^2 / x \le 1, y \ge 1, y^2 \le 1 + x\}$. Calculer l'aire de \tilde{D} .

Exercice 4: Soit Φ la fonction définie sur $\mathbb{R}^{+\star}$ par

$$\Phi(x) = \int_0^{+\infty} \frac{e^{-x(1+t^2)}}{1+t^2} dt \ .$$

- (1) (2 pts) Montrer que Φ est définie et continue sur $\mathbb{R}^{+\star}$.
- (2) (2 pts) Montrer que Φ est de classe C^1 sur $\mathbb{R}^{+\star}$ et calculer $\Phi'(x)$.

- (3) (1 pt) En utilisant le changement de variable $u=t\sqrt{x}$, relier $\int_0^A e^{-xt^2}dt$ et $\int_0^{A\sqrt{x}}e^{-u^2}du$. En déduire une relation entre $\Phi'(x)$, $\frac{e^{-x}}{\sqrt{x}}$ et l'intégrale de Gauss $\int_0^{+\infty}e^{-u^2}du$ pour tout x>0.
- (4) (1 pt) En utilisant le changement de variables $x=t^2$ établir une relation entre $\int_0^A \frac{e^{-x}}{\sqrt{x}} dx$ et $\int_0^{\sqrt{A}} e^{-t^2} dt$ pour tout A>0.
- (5) (1 pt) Montrer que $\lim_{x\to +\infty} \Phi(x) = 0$ et calculer $\Phi(0)$.
- (6) (1 pt) En intégrant la relation trouvée à la question 3 entre 0 et A>0, puis en faisant tendre $A\to +\infty$, calculer la valeur de l'intégrale de Gauss $\int_0^{+\infty} e^{-x^2} dx$.