Emmanuel Hebey Année 2022-2023

Intégration Examen - Session 1 (Durée 2 heures)

(Le barème est donné à titre indicatif) (Les notes supérieures à 20 sont ramenées à 20) (Les documents et les calculatrices sont interdits)

Exercice 1: (1) (3 pts) Soit $\alpha \geq 0$ un réel. Etudier, en fonction de α , la convergence de l'intégrale généralisée

$$I_{\alpha} = \int_{0}^{+\infty} \frac{5x^3 + 3x + 1}{\sqrt{x}(2x^{\alpha} + 3x + 1)} dx .$$

Justifier vos réponses et préciser en quelle(s) borne(s) I_{α} est généralisée.

(2) (2 pts) Soit $f: \mathbb{R}^{+\star} \to \mathbb{R}$ la fonction

$$f(x) = \frac{x^3 - 3x^2 + 2x + 1}{2x^3 + x + 1} + \frac{(x^2 + 1)\sin(x)}{x^3 + 2} + \frac{\ln(x)}{x}\cos(x) .$$

L'intégrale $\int_1^{+\infty} f(x)dx$ est-elle convergente ?

Exercice 2: (1) (3 pts) Pour A > 0, calculer $I_A = \int_0^A \frac{x}{(x+1)^2(x^2+1)} dx$. En déduire la valeur de $I = \int_0^{+\infty} \frac{x}{(x+1)^2(x^2+1)} dx$.

(2) (3 pts) Calculer, en justifiant, la limite
$$\ell = \lim_{n \to +\infty} \int_1^{+\infty} \frac{n^2 x^2 + 3x + 1}{n^2 x^2 (x^2 + 1)} dx$$
.

Exercice 3: Soit $D \subset \mathbb{R}^2$ donné par $D = \{(x,y) \in \mathbb{R}^2 / 0 \le x \le 1, x \le y \le x^2 + 1\}.$

- (1) (1 pt) Calculer l'aire de D.
- (2) (2 pts) Calculer l'intégrale double $I = \iint_D xy dx dy$.
- (3) (2 pts) Soit $\tilde{D} = \{(x,y) \in \mathbb{R}^2 \mid x \leq 2, y \geq 0, y^2 \leq x\}$. Calculer l'aire de \tilde{D} .

Exercice 4: Soit $n \in \mathbb{N}^*$ et Φ_n la fonction définie sur \mathbb{R}^{+*} par

$$\Phi_n(x) = \int_0^{+\infty} \frac{1}{(x^2 + t^2)^n} dt \ .$$

- (1) (2 pts) Montrer que Φ_n est définie et continue sur $\mathbb{R}^{+\star}$ pour tout $n \in \mathbb{N}^{\star}$.
- (2) (1 pt) Calculer $\Phi_1(x)$ pour x>0 en effectuant le changement de variables $\theta=\frac{t}{x}$.
- (3) (2 pts) Montrer que Φ_n est de classe C^1 sur $\mathbb{R}^{+\star}$ pour tout n et exhiber une relation entre $\Phi'_n(x)$ et $\Phi_{n+1}(x)$.
- (4) (2 pts) Montrer, par récurence sur n, qu'il existe une suite (k_n) de réels pour laquelle $\Phi_n(x) = \frac{k_n}{x^{2n-1}}$ pour tout n et tout x > 0. Quelle relation de récurrence définit les k_n ?

1