CY Cergy-Paris université Janvier 2023

Mathématiques-MS3, session 1 Durée 2 heures, calculatrice interdite

Questions de cours :

- (1) On considère la série entière $\sum_{n=0}^{\infty} \frac{n^2}{4^n} x^n$, où $n! = 1 \times 2 \times \cdots \times n$. Calculer son rayon de convergence.

- (2) Etudier la nature de la série numérique $\sum_{n=1}^{\infty} \frac{e^{-n}}{n}$. (3) Etudier la nature de l'intégrale généralisée $\int_{1}^{+\infty} \frac{\sin x}{x^{3}} dx$. (4) Soit $\Omega = \{(x;y) \mid 0 \le x \le 1, y \ge 0, y \le 1 + x\}$. Calculer l'intégrale double $\int \int_{\Omega} (x+y) dx dy$.

Exercice 1:

Soit f(x) une fonction 2π -périodique définie sur \mathbb{R} telle que

$$f(x) = x^2, \quad \forall x \in [-\pi; \pi].$$

- (1) Tracer le graphique de f sur l'intervalle $[-3\pi, 3\pi]$, puis étudier la parité $\mathrm{de}\ f.$
- (2) Calculer les coefficients de Fourier de f.
- (On remarque que $\cos(n\pi) = (-1)^n$ et $\sin(n\pi) = 0$.)
- (3) En déduire les valeurs de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Exercice 2:

Soit Ω le domaine défini par $\Omega = \{(x;y) \mid x^2 + \frac{y^2}{4} \leq 1\}$. On considère le changement de coordonnées suivant:

$$x = r\cos\theta, \quad y = 2r\sin\theta.$$

- (1) Dessiner le domaine Ω dans un plan muni d'un repère orthonormé, puis calculer le Jacobien du changement de coordonnées ci-dessus.
- (2) On suppose que le nouveau domaine en coordonnées $(r;\theta)$ est

$$\Omega' = \{(r; \theta) \mid 0 \le r \le 1; \ 0 \le \theta \le 2\pi\}.$$

Calculer l'intégrale double $\int \int_{\Omega} (x^2 + \frac{y^2}{4})^2 dx dy$. (3) Soit $\gamma:[0;2\pi] \to \mathbb{R}^2$ la courbe paramétrée fermée définie par

$$\gamma(t) = (\cos t; 2\sin t).$$

Justifier que la courbe γ est la frontière du domaine $\Omega.$

(4) Calculer l'intégrale curviligne $\int_{\gamma} -y dx$. Puis en appliquant le théorème de Green-Riemann, justifier que la valeur de cette intégrale curviligne est égale à l'aire du domaine Ω . En déduire l'aire du domaine Ω .