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) Examen séries
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UNIVERSITE

L’utilisation ou la consultation de téléphone est formellement interdite, les calculatrices, les téléphones
et les objets connectés (montre, lunette, écouteurs,...) doivent étre éteints, rangés dans un sac et déposés a
I’avant de 'amphi : il est interdit d’en avoir un sur soi ou sur sa table durant I’épreuve. Les documents sont

interdits.
Baréme indicatif : 3+-3-+5-+445

Exercice 1: Etudier la convergence des séries de termes généraux suivants :

n sin(n?) en —1

an:— e —— .
n?+2n+1 " T on 1 50t Cp = NG

Exercice 2: Déterminer le rayon de convergence des séries entiéres :
n,.2n n_5 n+1 1\ n
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Exercice 3: Soit (f,,) la suite de fonctions définie par

t"Int
Vn € N VE€)0;1], fult) = —— et f,(0) =0

n

On admet que les fonctions f,, sont continues.
1. Pour n € N* fixé, é¢tudier la fonction f, et montrer que Vt € [0;1], | fu(t)] < =5,

2. La série de fonctions de terme général f,, converge-t-elle simplement ? normalement ? sur [0; 1].

3. Rappeler le développement en série entiére de la fonction définie sur [0; 1] par In(1 — ¢).
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4. En admettant que pour tout n € N, / t"Int dt = ——— montrer que :
0 (n+1)

+oo 1

/0 In(t)In(1—t) dt =) ORI

Exercice 4: Soit ) a,z™ une série entiére de rayon de convergence infini, on note S sa somme. On

suppose de plus que S”(0) = 2 et S est solution sur R de I’équation différentielle
zy’ —y= 172"
. Montrer que ay = 1.
. Montrer que pour tout n € N\ {2}, (n+ 1)na,+1 — a, = 0 et que az = 3.
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3. En déduire les valeurs de aq et a;.
4

. Montrer que Vn > 3, a, =

Exercice 5 (Cours): On se propose de redémontrer le critére de Cauchy pour les séries a termes positifs.

On pourra utiliser en précisant explicitement qu’on l'utilise le théoréme de comparaison des séries a termes
positifs & savoir que pour des suites de réels (a,) et (b,) telles que Vn € N, 0 < a,, < b, si la série Y _ b,

converge alors la série ) a,, converge.
Soit (u,) une suite de réels strictement positifs telle que lim(uy,)» = I € [0;1].

1. Démontrer en revenant a la définition de limite qu’il existe un rang N a partir duquel

(un)% < %(1 + 1), on pourra proposer une représentation graphique du phénomeéne.
N 1— gVt
2. Soit ¢ €]0; 1], rappeler une démonstration de 'égalité : Z q" =
n=0
3. En déduire que la série Y ¢" converge et retrouver sa somme.

I—gq

4. A Taide des questions précédentes, démontrer que la série > u, converge.



