Emmanuel Hebey Année 2022-2023

Probabilités Examen

(Durée 2 heures)

(Le barème est donné à titre indicatif) (Les notes supérieures à 20 sont ramenées à 20) (Les documents sont interdits)

Exercice 1: On lance deux dés qui ne sont pas parfaitement équilibrés. Pour le premier dé, les nombres pairs ont tous une même probabilité $\frac{1}{12}$ d'apparaître et les nombres impairs ont tous une même probabilité p d'apparaître avec $p \in [0,1]$. Pour le second dé les nombres 1,2 et 3 on tous une même probabilité $\frac{1}{9}$ d'apparaître et les nombres 4,5 et 6 ont tous une même probabilité q d'apparaître, avec $q \in [0,1]$.

- (1) (1 pt) Que valent p et q?
- (2) (1 pt) On lance les deux dés et les deux lancers sont indépendants. Quelle est la probabilité d'obtenir 6 comme somme des nombres obtenus ?
- (3) (1 pt) Comme à la question précédente, on lance les deux dés et les deux lancers sont indépendants. Quelle est la probabilité d'obtenir 3 avec le premier dé sachant que la somme des dés vaut 6 ?

Exercice 2: Soient $(\Omega, \mathcal{P}(\Omega), P)$ un espace de probabilité fini, $a \in [0, 1]$ un réel à déterminer et $X : \Omega \to \llbracket -3, 3 \rrbracket$ une variable aléatoire dont la loi est donnée par le tableau

k	-3	-2	-1	0	1	2	3
$P_X(k)$	0,10	0,10	$0,\!25$	0,15	0,15	0,15	a

où on a noté $P_X(k)$ pour P(X=k).

- (1) (1 pt) Quelle valeur faut-il donner à a pour que les $p_k = P_X(k)$ du tableau correspondent bien à une probabilité sur [-3,3]?
- (2) (1 pt) Que vaut l'espérance de X?
- (3) (2 pts) Déterminer la loi de X^2 .
- (4) (1 pt) Que vaut la variance de X?
- (5) (2 pts) Que vaut la variance de $2X^2 + 1$?

Exercice 3: (3 pts) Soit $n \in \mathbb{N}^*$ et soit X_n une variable aléatoire suivant la loi uniforme sur l'ensemble $\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$. Que vaut la limite de $E(X_n)$ lorsque $n \to +\infty$?

1

Exercice 4: Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace de probabilité fini. Soient X_1 et X_2 deux variables aléatoires indépendantes sur $(\Omega, \mathcal{P}(\Omega), P)$ telles que $\mathbb{E}(X_1) = a_1$, $\mathbb{E}(X_2) = a_2$, $\operatorname{Var}(X_1) = \sigma_1^2$ et $\operatorname{Var}(X_2) = \sigma_2^2$, où a_1, a_2, σ_1 et σ_2 sont des réels donnés. On pose $Y_1 = X_1 + X_2$ et $Y_2 = X_1 - X_2$.

- (1) (4 pts) Calculer $\mathbb{E}(Y_1)$, $\mathbb{E}(Y_2)$, $Var(Y_1)$, $Var(Y_2)$ et $Cov(Y_1, Y_2)$.
- (2) (1 pt) On suppose que $\sigma_1^2 \neq \sigma_2^2$. Les variables Y_1 et Y_2 sont-elles indépendantes ?
- (3) On suppose que $\sigma_1^2 = \sigma_2^2$ et que X_1 et X_2 suivent une loi de Bernoulli de paramètres respectifs p_1 et p_2 avec $p_1, p_2 \in]0, 1[$ et $p_1 \neq p_2$.
- (3a) (1 pt) Quelle relation relie p_1 et p_2 ?
- (3b) (2 pts) On note $A = \{Y_1 = 0\}$ et $B = \{Y_2 = 0\}$. Calculer $P(A \cap B)$, P(A) et P(B).
- (3c) (1 pt) Les variables aléatoires Y_1 et Y_2 sont-elles indépendantes ?

Exercice bonus: (2 pts) Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace de probabilité fini. Soit $n \in \mathbb{N}^*$ et soit $p \in [0, 1]$. Soit $X : \Omega \to [0, n]$ une variable aléatoire qui suit la loi binomiale de paramètre n et p. Calculer l'espérance de X.

Quelques calculs qui pourraient être utiles, d'autres pas: $4 \times 9 = 36$; $7 \times 89 = 56$; $(3,1)^2 = 9,61$; $(2,2)^2 = 4,84$; $(3,2)^2 = 10,24$; $(2,3)^2 = 5,29$; $78 \times 0,3 = 23,4$; $81 \times 0,2 = 16,2$; 21,3-9,61 = 11,69; 20,6-4,84 = 15,76; $4 \times 15,76 = 63,04$; $4 \times 11,69 = 46,76$; $16 \times 0,25 = 4$; 20,6-10,24 = 10,36; $4 \times 10,36 = 41,44$.