

Examen de mathématiques 2 : Fonctions de plusieurs variables

L'utilisation ou la consultation de téléphone est formellement interdite, les téléphones et les objets connectés doivent être rangés dans un sac et <u>éteints</u>. Tous les documents sont interdits ainsi que les calculatrices. Barème indicatif : 5+1+4+5+5

Exercice 1: Calculer l'intégrale
$$I_1 = \int_{\frac{1}{2}}^1 \frac{1}{u(1+u)} \mathrm{d}u$$

Calculer l'intégrale $I_2 = \int_0^{\frac{1}{3}\pi} \frac{\tan t}{1 + \cos t} dt$, on effectuera le changement de variable $x = \cos t$

Exercice 2: Soit φ définie sur \mathbb{R}^2 par $\varphi(x,y) = x \ln(1+x^2+y^2)$, calculer $\frac{\partial \varphi}{\partial x}(x,y)$.

Exercice 3: Soit $\varphi: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 , telle que $\frac{\partial \varphi}{\partial x}(0;0) = 6$; $\frac{\partial \varphi}{\partial y}(0;0) = 2$;

 $\frac{\partial^2 \varphi}{\partial x^2}(0;0) = \frac{\partial^2 \varphi}{\partial y^2}(0;0) = \frac{\partial^2 \varphi}{\partial x \, \partial y}(0;0) = 1 \text{ et } a \text{ et } b \text{ deux r\'eels, on pose pour tout } t \in \mathbb{R}, f(t) = \varphi(t,at+bt^2).$

- 1. Calculer f'(t).
- 2. Calculer f''(0).
- 3. Montrer que l'on peut choisir a et b tels que f'(0) = 0 et f''(0) = -1.
- 4. Montrer que pour les valeurs de a et b calculées à la question précédente la restriction de φ à la parabole d'équation $y = ax + bx^2$ possède un maximum local en (0;0).

Exercice 4: Soit $\varphi:]0; +\infty[^3 \to \mathbb{R}$ la fonction définie par

$$\forall x, y, z \in]0; +\infty[; \varphi(x, y, z) = \frac{2}{xyz} + x^2 + y^2 + z^2]$$

- 1. Calculer les dérivées partielles premières de φ .
- 2. Montrer que si $(x_0, y_0, z_0) \in]0; +\infty[^3]$ est un point critique de φ , alors $x_0 = y_0 = z_0$.
- 3. Déterminer l'unique point critique M_0 de φ
- 4. Déterminer la hessienne de φ en M_0 .
- 5. La fonction φ possède-t-elle un minimum local, un maximum local ou un point col en M_0 ? On pourra pour cela utiliser sans la démontrer l'égalité suivante vraie pour tout réel x:

$$\begin{vmatrix} x & 2 & 2 \\ 2 & x & 2 \\ 2 & 2 & x \end{vmatrix} = (x-2)^2(x+4)$$

Exercice 5 (Question de cours): Soit $S \in \mathcal{M}_2(\mathbb{R})$ une matrice carrée symétrique dont les valeurs propres λ_1, λ_2 vérifient $0 < \lambda_1 \le \lambda_2$

- 1. Justifier rapidement l'existence d'une matrice P orthogonale $(P^t = P^{-1})$ telle que $S = P\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^t$.
- 2. Pour toute matrice colonne $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, on pose $U = P^t X = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$, montrer que ||U|| = ||X||.
- 3. Démontrer que pour toute matrice colonne $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, on a la relation

$$X^t S X = \lambda_1 u_1^2 + \lambda_2 u_2^2 \ge \lambda_1 (x_1^2 + x_2^2)$$

- 4. Soit $\varphi : \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^2 , dont (0;0) est un point critique et dont la hessienne en (0;0) est S.
 - (a) écrire le DL_2 de φ en (0;0)
 - (b) en déduire que φ possède en (0;0) un minimum local.