

Examen (session 2)

le 16 juin 2022 Chaque réponse doit être justifiée 2 pages Durée : 1h30

Exercice 1. (3,5 pt)

Soient A et C deux points. Soit B le point sur le segment AC tel que 2AB = BC.

(1,5 pt) a) Quels poids m_A , m_C faut-il mettre en A et C tels que B soit le barycentre du système (A, m_A) , (C, m_C) ?

(2 pt) b) Quels poids p_A , p_B faut-il mettre en A et B tels que C soit le barycentre du système (A, p_A) , (B, p_B) ?

Exercice 2. (6,5 pt) Soit

$$A = \left(\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right).$$

(2 pt) a) Calculer $\chi_A(x)$ et déduire que les valeurs propres de A sont 5, 3 et -1.

(2 pt) b) Trouver une base de vecteurs propres de A.

(1 pt) c) La base trouvée dans b), est-elle orthogonale? orthonormée?

(1,5 pt) d) Diagonaliser la matrice symétrique A dans une base orthonormée. Donner P et D telles que D est diagonale, P est orthogonale et $A = P \cdot D \cdot {}^t P$.

Exercice 3. (5,5 pt)

Soit $F = \text{Vect}(v_1, v_2) \subset \mathbb{R}^3$, où $v_1 = (1, 1, 0)$ et $v_2 = (2, 2, 2)$.

(2 pt) a) Trouver une base <u>orthonormée</u> de F.

(2 pt) b) Calculer la projection $pr_F(v)$, où v = (1, 3, 5).

(1.5 pt) c) Trouver une base de F^{\perp} .

Tournez la page, s'il vous plaît

Exercice 4. (5 pt)

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par la matrice

$$A = \begin{pmatrix} 1/3 & -2/3 & -2/3 \\ -2/3 & 1/3 & -2/3 \\ -2/3 & -2/3 & 1/3 \end{pmatrix}$$

(dans la base canonique de \mathbb{R}^3).

(1,5 pt) a) Démontrer que f est une isométrie.

(2 pt) b) Démontrer que f est une réflexion par rapport à un plan.

(1,5 pt) c) Donner l'équation de ce plan.