CY Université - L1 MIPI, Algèbre 2,

Examen, 15 mai 2023

Exercice I. Pour tout $x \in \mathbb{R}$ on considère

$$A(x) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & x \\ 1 & 4 & x^2 \end{pmatrix}$$

- (1) Sans faire de calculs, montrez que $\det(A(1)) = 0$ et que $\det(A(2)) = 0$.
- (2) Trouvez le rang de la matrice A(1) et le rang de la matrice A(2).
- (3) les matrices A(1) et A(2) sont-elles inversibles? Pourquoi?
- (4) Pour tout $x \in \mathbb{R}$, calculez maintenant $\det(A(x))$ en fonction de x et montrer que x = 1 et x = 2 sont les seules solutions de l'equation

$$\det A(x) = 0.$$

- (5) On pose x = 3. Quel est le rang de la matrice A(3)? Justifiez votre réponse.
- (6) Montrer que la matrice A(3) est inversible et calculer la matrice inverse $A(3)^{-1}$ de A(3).
- (7) Montrer que la famille des vecteurs

$$\mathcal{B} = \left(e_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, e_2 = \begin{pmatrix} 1\\2\\4 \end{pmatrix}, e_3 = \begin{pmatrix} 1\\3\\9 \end{pmatrix}\right),$$

forme une base dans \mathbb{R}^3 .

(8) On considère la base canonique de \mathbb{R}^3 :

$$\mathcal{B}_c = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire ayant la matrice de representation

$$\mathcal{M}_{\mathcal{B}_c,\mathcal{B}_c}(f) = A(3)$$

dans la base canonique \mathcal{B}_c ,

- a) Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ est bijective.
- b) Quelle est la matrice de representation dans la base \mathcal{B}_c de l'application réciproque $f^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$?
- c) On considère le vecteurs e_1 , e_2 et e_3 de la base \mathcal{B} définie dans la question (8). Que vaut $f^{-1}(e_1)$? Que vaut $f^{-1}(e_1 + 2e_2)$?

Exercice II. On considère S l'ensemble de tous les polynômes $P(X) \in \mathbb{R}[X]$ tels que $(X-1)^2$ divise le polynôme P(X) + 1 et X^2 divise le polynôme P(X) + 2.

- (I.a) Vérifier que $P_3(X) = (X-1)^2(2X-1) \in \mathcal{S}$. Quel est le degré de polynôme $P_3(X)$?
- (I.b) Vérifier que si un polynôme Q(X) est divisible par $X^2(X-1)^2$ alors $P_3(X)+Q(X)\in\mathcal{S}$.
- (I.c) Trover un polynôme $P_4(X)$ de degré 4 appartenant à l'ensemble S.
- (I.d) Montrer que pour tout $n \geq 3$ il existe un polynôme $P_n(X) \in \mathcal{S}$ de degré n.

On remarque que d'après la question (I.b), $P(X) = P_3(X) + X^2(X-1)^2S(X) \in \mathcal{S}$ pour tout polynôme $S(X) \in \mathbb{R}[X]$. On se propose maintenant de montrer que pour tout polynôme $P(X) \in \mathcal{S}$ il existe $S(X) \in \mathbb{R}[X]$ tel que $P(X) = P_3(X) + X^2(X-1)^2S(X)$.

- (II.a) Montrer que si P(X), $\tilde{P}(X) \in \mathcal{S}$ alors $P(X) \tilde{P}(X)$ est divisible par $(X 1)^2$ et par X^2 .
- (II.b) Pour $Q(X) \in \mathbb{R}[X]$ on considère le polynôme dérivé Q'(X) de Q(X). On suppose dans cette question que $Q(X) \in \mathbb{R}[X]$ est divisible par X^2 et on note $S(X) \in \mathbb{R}[X]$ le quotient de la division euclidienne de Q(X) par X^2 . On a donc

$$Q(X) = X^2 S(X).$$

- i) Montrer que si a=1 est une racine de Q(X) alors a=1 est aussi une racine de S(X)
- ii) Verifier que $Q'(X) = 2XS(X) + X^2S'(X)$.
- iii) On suppose que a=1 est une racine de Q(X). Montrer que si la multiplicité de la racine a=1 de Q(X) est plus grande ou égale à 2, alors la multiplicité de la racine a=1 pour le polynôme S(X) est aussi plus grande ou égale à 2.
- iv) Montrer que si $(X-1)^2$ divise Q(X) alors $(X-1)^2$ divise aussi S(X).

- (II.c) Montrer que si un polynôme $Q(X) \in \mathbb{R}[X]$ est divisible par X^2 et par $(X-1)^2$ alors il est aussi divisible par $X^2(X-1)^2$.
- (II.d) En déduire, en expliquant votre raisonnement, que pour tout $P(X) \in \mathcal{S}$, il existe $S(X) \in \mathbb{R}[X]$ tel que $P(X) = P_3(X) + X^2(X-1)^2 S(X)$.
- (II.e) Quel est le degré minimal de tout polynôme $P(X) \in \mathcal{S}$?

Exercice III. On se propose de résoudre l'équation différentielle

(E)
$$y'' - 11y' + 10y = te^{-t} + e^t$$
, $t \in \mathbb{R}$

On considère l'équation homogène associée

$$(E_0)$$
 $y'' - 11y' + 10y = 0$, $t \in \mathbb{R}$.

et les équations

$$(E_1)$$
 $y'' - 11y' + 10y = te^{-t}$, $t \in \mathbb{R}$,

et

$$(E_2)$$
 $y'' - 11y' + 10y = e^t$, $t \in \mathbb{R}$.

- (1) Ecrire l'équation caractéristique associée à l'équation homogène (E_0) .
- (2) Résoudre l'équation homogène associée.
- (3) (Attention! Dans cette question, toute faute dans vos réponses donnera des points négatifs!) (QCM) Vrai ou faux?
 - a) On peut trouver une solution particulière $y_1 : \mathbb{R} \to \mathbb{R}$ de l'équation (E_1) en la cherchant sous la forme $y_1(t) = a t e^{-t}$, $\forall t \in \mathbb{R}$, avec $a \in \mathbb{R}$ une constante inconnue.
 - b) On peut trouver une solution particulière $y_1 : \mathbb{R} \to \mathbb{R}$ de l'équation (E_1) en la cherchant sous la forme $y_1(t) = (a\,t + b)e^{-t}$, $\forall t \in \mathbb{R}$, avec $a, b \in \mathbb{R}$ des constantes inconnues.
 - c) On peut trouver une solution particulière $y_1 : \mathbb{R} \to \mathbb{R}$ de l'équation (E_1) en la cherchant sous la forme $y_1(t) = ae^{-t}$, $\forall t \in \mathbb{R}$, avec $a \in \mathbb{R}$ une constante inconnue.
 - d) On peut trouver une solution particulière $y_2 : \mathbb{R} \to \mathbb{R}$ de l'équation (E_2) la cherchant sous la forme $y_2(t) = a t e^{-t}$, $\forall t \in \mathbb{R}$, avec $a \in \mathbb{R}$ une constante inconnue.
 - e) On peut trouver une solution particulière $y_2 : \mathbb{R} \to \mathbb{R}$ de l'équation (E_2) en la cherchant sous la forme $y_2(t) = (at + b)e^{-t}$, $\forall t \in \mathbb{R}$, avec $a, b \in \mathbb{R}$ des constantes inconnues.
 - f) On peut trouver une solution particulière $y_2 : \mathbb{R} \to \mathbb{R}$ de l'équation (E_2) en la cherchant sous la forme $y_2(t) = ae^{-t}$, $\forall t \in \mathbb{R}$, avec $a \in \mathbb{R}$ une constante inconnue.
 - g) Si $y_1 : \mathbb{R} \to \mathbb{R}$ est une solution de (E_1) et $y_2\mathbb{R} \to \mathbb{R}$ est une solution de (E_2) , alors $y_1 + y_2$ est une solution de (E).
 - h) Si $y_1: \mathbb{R} \to \mathbb{R}$ et $y_2: \mathbb{R} \to \mathbb{R}$ sont deux solutions de (E) alors $y_1 y_2$ est une solution de (E_1) .
 - i) Si $y_1: \mathbb{R} \to \mathbb{R}$ et $y_2: \mathbb{R} \to \mathbb{R}$ sont deux solutions de (E) alors $y_1 y_2$ est aussi une solution de (E).
 - j) Si $y_1 : \mathbb{R} \to \mathbb{R}$ et $y_2 : \mathbb{R} \to \mathbb{R}$ sont deux solutions de (E) alors $y_1 y_2$ est une solution de (E_0) .
 - k) Si $y : \mathbb{R} \to \mathbb{R}$ est une solution de (E) et $y_0 : \mathbb{R} \to \mathbb{R}$ est une solution de (E_0) alors $y + y_0$ est une solution de (E).
 - l) Si $y : \mathbb{R} \to \mathbb{R}$ est une solution de (E) et $y_0 : \mathbb{R} \to \mathbb{R}$ est une solution de (E_0) alors $y + 2y_0$ est une solution de (E).
 - m) Si $y : \mathbb{R} \to \mathbb{R}$ est une solution de (E) et $y_0 : \mathbb{R} \to \mathbb{R}$ est une solution de (E_0) alors $y_0 + 2y$ est une solution de (E)
- (4) Résoudre l'équation (E).