CY Cergy Paris Université

Date: Janvier 2025

Examen Mathématiques 1 - PCSTI (Session 1) Durée: 3 heures

Exercice 1.

(a) soient a et b deux nombres réels positifs, montrer que pour tout n entier naturel,

$$(a+b)^n \ge a^n + b^n.$$

- (b) Calculer les limites suivantes: $\lim_{x\to+\infty} \frac{4x^2+x-6}{x^2+3x+1}$; $\lim_{x\to-\infty} \frac{\cos(6x)}{x^2}$. (c) Calculer les dérivées des fonctions suivantes: $f(x) = \ln(x^3 - 4x + 6)$;
- (c) Calculer les dérivées des fonctions suivantes: $f(x) = \ln(x^3 4x + 6)$, $g(x) = \frac{\cos(x^4)}{1+x^2}$.
- (d) Montrer que l'équation $x^3 6x + 1 = 0$ admet une solution dans l'intervalle [0; 1].
- (e) Déterminer le DL d'ordre 3 en 0 de la fonction f définie par $f(x) = e^{2x}$.

Exercice 2.

- (1) Déterminer une équation cartésienne du Plan (P) passant par les trois points suivants: A(1;0;0), B(0;1;0) et C(0;0;1).
- (2) Soit D la droite passant par le point E(3;3;3) et perpendiculaire au plan
- P. Déterminer une équation paramétrique de la droite D.
 (3) Calculer les coordonnées du point d'intersection (noté F) d
- (3) Calculer les coordonnées du point d'intersection (noté F) de la droite D et du plan P.
- (4) Calculer la distance EF.
- (5) (Bonus) soit G un point quelconque dans P, justifier que $EG \geq EF$.

Exercice 3. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{e^x}{1+2e^x}$.

- (1) Calculer les limites $\lim_{x\to-\infty} f(x)$ et $\lim_{x\to+\infty} f(x)$.
- (2) Dresser le tableau de variations de la fonction f.
- (3) Déterminer la fonction réciproque de f, notée f^{-1} . (Indication: cela revient à résoudre l'équation $\frac{e^x}{1+2e^x}=y$.)
- (4)Quel est le domaine de définition de f^{-1} ?
- (5) Justifier que f^{-1} est une fonction strictement croissante.

Exercice 4.

Soient n un entier naturel strictement positif et a et b deux nombres réels strictement positifs tels que a < b. Montrer, à l'aide du théorème des accroissements finis appliqué à la fonction $f(x) = x^{n+1}$ définie sur l'intervalle

[a;b], l'encadrement suivant:

$$(n+1)a^n < \frac{b^{n+1} - a^{n+1}}{b-a} < (n+1)b^n.$$