Examination of MATHEMATICS (M1)

(Duration : 2 hours and 30 minutes - Documents, calculators and mobile phones are forbidden)

Exercice 1 : Let p and n be two elements of \mathbb{N} such that $p \leq n$. Give the definition of the binomial coefficient $\binom{n}{p}$. Show that the integer number $n(n-1)\cdots(n-p+1)$ is a multiple of p!

Exercise 2 : Let u_n be a real sequence and $l \in \mathbb{R}$. Give the mathematical definition of

$$u_n \longrightarrow \ell$$
 when $n \longrightarrow +\infty$.

Exercise 3 :

1) Let A = 1 - i. Calculate A^2 and A^4 . 2) Solve the equation $z^2 - 2z + 1 + \frac{1}{2}i = 0$ $(z \in \mathbb{C})$.

Exercise 4 : Calculate the limits of the following quantities if they exist

$$f(x) = \frac{x}{\sin(3x)}$$
 when $x \longrightarrow 0$, $g(x) = \frac{3 + \ln x}{5 + 2\ln x}$ when $x \longrightarrow +\infty$.

Exercise 5 :

1) Let $\theta \in \mathbb{R}$. Show that

$$\frac{d}{dx}\left(\sin(x+\theta)\right) = \sin\left(x+\theta+\frac{\pi}{2}\right)$$

and then show ¹ that for all $n \in \mathbb{N}^*$ we have for the *n*th derivative :

$$\frac{d^n}{dx^n}(\sin x) = \sin\left(x + n\frac{\pi}{2}\right).$$

2) Let f be a function which is defined on \mathbb{R} by $f(x) = x^2 \sin x$. Show that $\forall n \in \mathbb{N}^*$ we have

$$f^{(n)}(x) = x^2 \sin\left(x + n\frac{\pi}{2}\right) + A_n x \sin\left(x + (n-1)\frac{\pi}{2}\right) + B_n \sin\left(x + (n-2)\frac{\pi}{2}\right)$$

where A_n and B_n are constants to be precised (one can use Leibnitz's formula).

Exercise 6 : Let φ a function defined on] - 1, 1[by

$$\varphi(t) = \frac{t}{1 - t^2}.$$

1) Calculate

$$\varinjlim_{t \xrightarrow{t < 1}} \varphi(t) \qquad \text{and} \qquad \limsup_{t \xrightarrow{t > -1} -1} \varphi(t).$$

2) Let f be a function which is derivable on \mathbb{R} such that $\lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = \ell$ with $\ell \in \mathbb{R}$. We consider a new function defined on [-1, 1] by

$$u(t) = \begin{cases} f(\varphi(t)) & \text{if } t \in]-1, 1[\\\\ \ell & \text{if } t = -1 \text{ or } t = 1 \end{cases}$$

a) Show that u is continuous on [-1, 1] and derivable on] - 1, 1[. Show that there exists $t_0 \in] - 1, 1[$ such that $f'(\varphi(t_0)) \times \varphi'(t_0) = 0$ (one can use Rolle's theorem).

b) Deduce that there exists $x_0 \in]-\infty, +\infty[$ such that $f'(x_0)=0$.

¹When f is a n times derivable function $\frac{d^n f(x)}{dx^n}$ denotes $f^{(n)}(x)$.